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Abstract: A method based on context (environment 
of the system) description and partial-order reduction 
is presented in order to improve model checking 
verification on large systems. The context describes 
the behaviour of the system environment as a set of 
formal use cases decomposed in scenarios. It aims 
at leading the system to the pertinent relevant 
configuration according to a desired property one 
want to validate. The verification is thus done by only 
focusing on a subset of the system by model 
checking verification with the OBP toolset [12, 6]. 
The classical combinatorial explosion of the system 
is thus handled by the context. Nevertheless the 
concurrency introduced by the different actors of the 
environment running in parallel could possibly 
generate an exponential amount of scenarios thus 
preventing model checking. To circumvent this 
problem the partial-order reduction method is 
introduced to factorize equivalent scenarios into a 
single one following the Mazurkiewicz trace 
semantics. 
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1. Introduction 

1.1 The context: Embedded Systems 

The conception and the development of highly 
critical embedded systems are subjected to 
economical and time project constraints but must 
also respect drastic security standards. In avionics or 
aerospace those constraints are exacerbated 
because they must respond to robustness and 
reliability criteria’s to go through the certification 
process. For that purpose the verification and 
validation process are reinforced all along the 
development cycle of the system where the safety 
process is omnipresent. Although the certification is 
based on the testing process with very tight rules, it 
can't possibly ensure the system is not prone to 
errors because of its incompleteness.  

In [1], the author defines the test as the process of 
finding errors meaning that no error found only 
means several other ones have to be done. It is a 
very tough task even for highly experienced 
engineers. In most cases, tests derive from textual 
specification and engineers’ judgment. As a 

consequence textual requirements could be 
interpreted in different manner from one to another. 
Above all the link between the requirement and the 
behavior of the environment is often neglected or 
implicitly identified relying on the knowledge of the 
system engineer.  

Over this last decade, the improvements of high 
technology has increased exponentially. In the 
meanwhile complexity of Embedded Reactive 
Critical Systems has grown drastically in the same 
manner. To cope with this problem, formal methods 
have been developed to help the verification of 
complex systems. 

 

1.2 Formal verification by Model Checking 

Classical model checking method automatically 
verifies whether the system represented by a 
composition of automata’s fulfils a given property 
expressed in temporal logic formulae (LTL [2], CTL 
[3], etc.). This technique well defined and efficient for 
small systems suffers from the combinatorial 
explosion when dealing with huge ones. This 
complexity is intrinsically attached to systems 
composed by several processes running in parallel. 
As a consequence the model checking method can’t 
determine the process events order before the 
execution time and must keep track of all possible 
transitions interleaving leading to overwhelming 
storage of states. 

 

Figure 1: model checking 
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In the Figure 1, the model checking method will 
explore all states and transitions until all states have 
been visited (states reachable from S1 and S3 will be 
explored too).  Even in case the property to be 
fullfiled is insensitive to the order of  α? and β?, both 
interleaving will be memorised. 

    

1.3 Contribution 

In this paper we expose a verification method based 
on context description [4] combined with partial-
order reduction [5]. The context represented by a set 
of concurrent actors describes the environment of 
the system. It allows restricting the system (modeled 
in SDL

1
 to well identified operational phases such as 

initializations, degraded modes, reconfigurations, 
etc… and strongly alleviates the size of the model 
under verification. The reduced system only contains 
relevant part corresponding to the verification of a 
property. 

Even though the model checking is made possible 
on the reduced system, the environment composed 
by concurrent actors could grow exponentially when 
expanding the formal use cases into individual 
scenarios. This is precisely the combinatorial 
explosion we want to address. 

 

1.4 Organisation of the paper 

The paper is organised as follows: 

In paragraph 2 we present the CDL language 
(Context Description Language) and the OBP toolset 
(Observer Based Prover). We then expose the main 
objective of this paper. In paragraph 3 we briefly 
remind the partial-order reduction method and then 
we present our reduction methodology. In paragraph 
4 we present the experimentations of the method 
made on SDL systems and in paragraph 5 we 
summarizes the results obtained before concluding 
in paragraph 6. 

2. Modelling framework 

2.1 CDL: an environment description language 
The weak integration of formal methods in the 
industry is mainly the consequence of two major 
difficulty. First of all, the lack of industrial tools 
allowing formal verification on large systems 
generating a global state space explosion.  Then 
there is a gap between the process of requirements 
designed in natural language and formal verification 
using properties encoded in a well defined 
semantics. Indeed model checking is an automatic 
but mathematical process where the system and the 
property have their own mathematical foundation so 
that to ensure irrefutable results. Besides this, 
writing requirements using temporal logics is not 
straightforward and needs some expertise. To cope 
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with those two drawbacks, the CDL language is 
developed in order to propose an easy handling tool 
for model checking verification [6]. The CDL aims at 
modelling the behaviour of the under verification 
system context as a set of formal use cases which 
semantics relies on the semantics of traces [7]. This 
DSL allows specifying the context with scenarios 
and temporal properties using property patterns. 
Moreover, CDL provides the ability to link each 
expressed property to a limited scope of the system 
behavior.The idea behind context is that the 
requirements one want to verify are often linked to 
specific use cases so that it’s not necessary to 
explore all possible scenarios on the system. 
Contrary to classical model checking methods where 
the system is explored in its entirety, the CDL 
language aims at reducing the system behaviour 
before its effective verification by interfacing with an 
existing model checker such as IFx, TINA or CADP 
[8 , 9, 10]. The context description thus contributes 
to reduce the complexity of the system bypassing 
the state explosion. To address the problem of the 
formalization of the requirements, following the work 
of Dwyer and Cheng [11], CDL incorporates 
temporal property patterns so that to assist the 
engineer in expressing system requirements directly 
in formal language. One of the originality of this 
language is that the properties called observers can 
be attached to a specific scope of the environment 
where the verification of the property is the most 
relevant. CDL is defined in three complementary 
levels. The first one describes the applications 
(actors) interacting with the system. The second one 
identifies interesting functionalities of each actor so 
that to dip the system into a particular situation 
interesting for the verification. Those functionalities 
are then detailed in the last level by sequences of 
Message Sequence Charts defined in the norm 
Z120 [13]. The CDL language have been integrated 
in the OBP [12, 6] toolset developed as an eclipse 
plugin in the Topcased

2
 environment. OBP allows 

the modelling of graphical context and the connexion 
to different model checkers.   
 
2.2 Scenarios explosion 
The description of the environment of a system 
allows defining precise configurations one want to 
observe on the model according to a property to be 
fulfilled. This environment composed by several 
actors running in parallel could possibly lead to a 
huge amount of scenarios each one synchronised 
with the system and the property. This could prevent 
efficient model checking because of the size of the 
scenario automata generated. Basically, the 
combinatorial explosion of the global state space is 
not a problem anymore because the composition of 
a trace with the system is straightforward. 
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Nevertheless the bottleneck is displaced to the 
combinatorial explosion produced by all the possible 
scenarios generated by the actors interleaving. For 
instance, n concurrent actors executing only one 
message would generate n! scenarios. This is 
precisely this combinatorial explosion we want to 
reduce. One can reasonably expect numerous 
equivalent scenarios only differing by events which 
can be interleaved in any order. This supposition is 
justified because embedded critical systems are 
designed without identifying all possible interactions 
between the system and the environment so that it 
has to be robust to handle unexpected sequences of 
messages. One way to remove those equivalent 
scenarios is the application of partial-order reduction 
method. For instance, if the order of all combination 
of the n previous messages is irrelevant, then only a 
single scenario among the n! will be selected.    

3. Partial-order reduction for SDL 

3.1 Partial-order method 
It has been observed that model checking method 
makes redundant work by exploring all states and all 
transitions in the global state space. Nevertheless 
among all the interleaving leading to a same state, 
very few of them modify the truth or falsity of a 
property so that a lot of them could be removed from 
the automata before its effective construction. Hence 
the model checking becomes practical. 
 
Partial-order takes advantage of the so called 
diamond property which states that whenever two 
adjacent transitions can be commuted without 
modifying the system behaviour, then only one 
interleaving is meaningful. In this case the two 
transitions are said to be independent.  The partial- 
order theory appeared in the work of Mazurkiewicz 
theory of traces [14] which semantics has been the 
foundation of most partial-order methods.  
 
The methodology of the algorithms implementing 
partial-order reduction method is based on a static 
analysis of the system: for each global state the 
smallest subset among fireable transitions is 
selected, sufficient to eliminate redundancies 
introduced by the diamond property.  
 
Many works in this area have been achieved by 
several researchers. Valmari [15] first developed the 
stubborn set method and noticed the ignoring 
problem where some transitions could never been 
reached (fairness assumption). In the work of Doron 
Peled [16], another algorithm called ample set is 
implemented and a solution for solving the ignoring 
problem is presented by adding several conditions 
called proviso. Further reduction has been obtained 
by Godefroid [17] who noticed that independent 
transitions are not always removed applying 
previous algorithms. He developed the persistent set 
(which generalizes ample set and stubborn set 

method) and the sleep set method further reducing 
the global state space. 
 
The above algorithms differ by the information taken 
from the system to compute the dependencies. 
Comparisons between them revealed that the more 
information the more reduction could be obtained but 
not systematically. The smallest set selected the 
smallest reduced graph computed is not granted. At 
the end of the day, there isn’t a unique algorithm 
giving systematically the best reduction.  
 
Those algorithms have been implemented on the fly 
with significant reduction results. For instance in the 
figure 2, assuming that α?, β? and δ! are all three 
independent: 
 

 

Figure 2: Partial-order 

Applying the partial-order method to the first system, 
we obtain the reduced automata with solid lines and 
states filled in grey. Dashed arrows and blank states 
will be removed from the global state space. 
Moreover states reachable from S1 and S3  will have 
to be explored by applying the same method. 
 
Introducing context behaviour before partial-order 
reduction method could further reduce the global 
state space. Let’s consider the Figure 3 symbolizing 
the environment behaviour and the previous 
automata. In this case, the environment will restrict 
the system preventing it to explore states reachable 
from S1 and S3. Therefore after partial-order 
reduction only states S0, S2, S5, S8 and S9 will be 
explored. 
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Figure 3: Context reduction 

 
 
Describing the context of the system is a good way 
to further reduce the system behaviour. As 
introduced the main drawback resides in the 
exponential number of scenarios obtained when 
expanded.  
 
The previous works apply the partial-order 
methodology on the fly on the global state space. In 
our work we apply partial-order method on the 
context. We have developed a new independence 
relation to group scenarios of the context into 
equivalent classes. The main difference between our 
independence relation and those already existing is 
that partial-order method can’t be directly applied on 
the graph of scenarios (context) because we are 
working on two open systems: the environment and 
the system whereas classical methods work directly 
when constructing the global state space which is a 
closed system. In fact the independence between 
two actions in the context doesn’t ensure their 
independence in the system. Summarizing our 
independence relation: two events from the context 
are independent whenever their interleaving lead to 
the same behaviour of the system. 
 
To compute those independence relations, we have 
developed a decision procedure in case of systems 
composed by a single one process. 
To extend this relation to the multi process case, we 
needed to take into account the possible 
communication between internal processes which 
can introduce some dependency relation. 
 
Once the independence relation computed, we 
applied the Mazurkiewicz trace theory to organize 
the scenarios into equivalent classes. Two scenarios 
are equivalent (belong to the same class) if one can 
obtain the other one by permutation of independent 
adjacent event. As a consequence, only one 
representative of each class needs to be simulated 
on the system. 
 
For instance, let’s suppose 3 independent actions 
each one occurring from a distinct actor:  
A, B , C. We obtain 6 equivalent scenarios: ABC, 
ACB, BAC, BCA, CAB, CBA. One can check that we 

can obtain one another by successively permuting 
pair wised independent actions (A,B), (A,C) or (B,C). 
As a consequence all those scenarios belong to a 
unique class: [ABC] representing all 6 previous 
scenarios. Hence only one representative can be 
kept.  
 
3.2 Reduction methodology 
 
The picture depicted in the Figure 6 summarizes the 
different steps leading to the reduction of the 
context. At the very beginning we start with the 
context description designed by the engineer in 
relation with several properties he wants to check, 
and the SDL system. 
The first step is to obtain the independence relation 
between events of parallel actors. This is done by a 
static analysis of the SDL model. Once the pair 
wised independent events obtained we can apply 
the algorithm computing the equivalent classes of 
scenarios using the Foata [18] normal form. It is 
important to denote that this first step is done by only 
considering messages sent from the context to the 
system. The main reason is that the context can’t 
predict in which order the system will send the 
messages. As in the theory of game and the 
synthesis of controller [19], some are controllable by 
the context (the output) and some are not (input 
one). The idea is thus to separate outputs from 
inputs messages. This technic allows factorizing 
equivalent behaviour of controllable messages of the 
context but still keeping track of all possible 
reception order of the system. This one will 
determinate the executable scenario of the sub 
graph of scenarios obtained after reduction at model 
checking time. 
For instance, let’s consider the example of the 
following picture corresponding to the context and its 
entire graph of scenarios.   
 
 

 

Figure 4: The context 
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The context is represented by two parallel actors 
Actor1 and Actor2 each one sending a controllable 
message (Alpha respectively Epsilon) to the system. 
There are also two messages only controllable by 
the system: Beta and Gamma. From the context 
point of view we can’t determine in which order Beta 
and gamma will be sent by the system which is seen 
as a black box. In fact they could be sent after Alpha 
reception, after Epsilon reception, after both Alpha 
and Epsilon reception. Moreover Gamma and Beta 
could be separated by the sending of Epsilon 
message. The possible scenarios are represented in 
the Figure 4. 
 
Considering the following SDL system composed by 
a single process, a static analysis will find out that 
Alpha and Epsilon are independent.  
 
 

 

Figure 5: SDL system and reduced graph scenario 

 
At this step we must reconstruct the possible graph 
scenarios by removing redundancies induced by the 
independent messages. In the picture 5,  we can see 
that the initial graph context has been reduced when 
removing redundancies. Since we don’t know 
anything about the order of reception of Beta and 
Gamma and since we don’t want to execute the 
system to figure out the precise order, the sub graph 
contains the scenarios with Beta and Gamma in any 
possible sequence. 
 
For practicality, this step will be done on the fly 
without building the entire scenario graph at first. 
Further composition with the system will completely 
determinate the only executable scenario. In fact, 
expanding the graph and composing each scenario 
with the system is not very efficient because a lot of 
them can’t be totally synchronised with the system. 
For instance the scenario with the sequenced 
messages Epsilon followed with Beta can’t be 
simulated on the previous system because the 

system will be in the state S2 waiting for Alpha and in 
the meanwhile the context will be waiting for Beta. In 
order to avoid useless such composition, we choose 
to directly compose the sub graph with the system 
which will make his choice. Only one composition is 
needed instead of three if the context is expanded. 
 

 

Figure 6: Reduction method 

4. Experimentation: SDL models 

In this paper, we focused our work on the control 
part of the system without taking account of the data 
part: affectations, parameters. We can expect that 
the dependence introduced with the data will not 
strongly decreased the reduction obtained because 
those data will be taken into account only on 
decision (comparisons) and on the parameters sent 
by the output messages. Decisions have already 
been taken into account when computing the control 
independence. In fact decisions generally prevent 
the diamond property to be fulfilled because of the 
introduction of non-determinism (in case condition is 
not executed). Moreover transmission of parameters 
is made when exchanging messages. Those 
parameters can’t modify the behaviour of the system 
if no decisions are attached to them. We can thus 
reasonably expect a little loss of reduction. 

We have applied this method on several examples 
of growing complexity designed in SDL specification 
language. First we applied the technique on mono 
process systems and then extended it with multi 
process systems on avionics applications.  

5. Results 

Model Processes Actors  Initial Scn Reduced Scn 

DATCAPT 1 2 24 4 

CPDLC 1 3 840 2 

AFN 3 4 1238 301 
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We can see that the reduction could be very 
important applying partial-order methods. In case of 
the CPDLC

3
, we obtain a very big reduction because 

the process concerned the starting of the application 
where it has to start all the other ones. In this case, 
the process doesn’t know in which order processes 
will be instantiated so that saving messages are 
present in all states. At the end, only two scenarios 
are needed corresponding to a cold start and a reset 
of the system. In case of the AFN

4
, 3 processes 

have been modelled. The reduction is more limited 
than the CPDLC because save instances are less 
present and there are presence of non-determinism 
with the decision clauses (conditions on variables).  

6. Conclusion and perspectives 

We have presented in this paper a method 
combining context description method and partial- 
order application. We obtained promising results on 
avionic applications. This work will be further applied 
with the data part. Partial-order applications have 
been first introduced to untimed systems application. 
Little work has been made in case of temporised 
systems [20, 21]. We will extend our work to 
temporised SDL systems with the introduction of the 
timers. We can notice that the complexity of the 
context is mainly due to the number of concurrent 
actors identified. A methodology of context 
construction is another way to further reduce the 
context.  
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