
 Page 1/6

Partial-Order application for Formal Software Verification

X. Dumas1, F. Boniol2, Ph. Dhaussy3, E. Bonnafous1

1: CSSI, 3 rue du professeur Pierre Vellas 31300 Toulouse
2: ONERA, 2 avenue Edouard Belin 31000 Toulouse

3: ENSIETA , 2 rue François Verny 29806 Brest

Abstract: A method based on context (environment
of the system) description and partial-order reduction
is presented in order to improve model checking
verification on large systems. The context describes
the behaviour of the system environment as a set of
formal use cases decomposed in scenarios. It aims
at leading the system to the pertinent relevant
configuration according to a desired property one
want to validate. The verification is thus done by only
focusing on a subset of the system by model
checking verification with the OBP toolset [12, 6].
The classical combinatorial explosion of the system
is thus handled by the context. Nevertheless the
concurrency introduced by the different actors of the
environment running in parallel could possibly
generate an exponential amount of scenarios thus
preventing model checking. To circumvent this
problem the partial-order reduction method is
introduced to factorize equivalent scenarios into a
single one following the Mazurkiewicz trace
semantics.

Keywords: partial-order, model checking, formal
methods, CDL, SDL, OBP

1. Introduction

1.1 The context: Embedded Systems

The conception and the development of highly
critical embedded systems are subjected to
economical and time project constraints but must
also respect drastic security standards. In avionics or
aerospace those constraints are exacerbated
because they must respond to robustness and
reliability criteria’s to go through the certification
process. For that purpose the verification and
validation process are reinforced all along the
development cycle of the system where the safety
process is omnipresent. Although the certification is
based on the testing process with very tight rules, it
can't possibly ensure the system is not prone to
errors because of its incompleteness.

In [1], the author defines the test as the process of
finding errors meaning that no error found only
means several other ones have to be done. It is a
very tough task even for highly experienced
engineers. In most cases, tests derive from textual
specification and engineers’ judgment. As a

consequence textual requirements could be
interpreted in different manner from one to another.
Above all the link between the requirement and the
behavior of the environment is often neglected or
implicitly identified relying on the knowledge of the
system engineer.

Over this last decade, the improvements of high
technology has increased exponentially. In the
meanwhile complexity of Embedded Reactive
Critical Systems has grown drastically in the same
manner. To cope with this problem, formal methods
have been developed to help the verification of
complex systems.

1.2 Formal verification by Model Checking

Classical model checking method automatically
verifies whether the system represented by a
composition of automata’s fulfils a given property
expressed in temporal logic formulae (LTL [2], CTL
[3], etc.). This technique well defined and efficient for
small systems suffers from the combinatorial
explosion when dealing with huge ones. This
complexity is intrinsically attached to systems
composed by several processes running in parallel.
As a consequence the model checking method can’t
determine the process events order before the
execution time and must keep track of all possible
transitions interleaving leading to overwhelming
storage of states.

Figure 1: model checking

 Page 2/6

In the Figure 1, the model checking method will
explore all states and transitions until all states have
been visited (states reachable from S1 and S3 will be
explored too). Even in case the property to be
fullfiled is insensitive to the order of α? and β?, both
interleaving will be memorised.

1.3 Contribution

In this paper we expose a verification method based
on context description [4] combined with partial-
order reduction [5]. The context represented by a set
of concurrent actors describes the environment of
the system. It allows restricting the system (modeled
in SDL

1
 to well identified operational phases such as

initializations, degraded modes, reconfigurations,
etc… and strongly alleviates the size of the model
under verification. The reduced system only contains
relevant part corresponding to the verification of a
property.

Even though the model checking is made possible
on the reduced system, the environment composed
by concurrent actors could grow exponentially when
expanding the formal use cases into individual
scenarios. This is precisely the combinatorial
explosion we want to address.

1.4 Organisation of the paper

The paper is organised as follows:

In paragraph 2 we present the CDL language
(Context Description Language) and the OBP toolset
(Observer Based Prover). We then expose the main
objective of this paper. In paragraph 3 we briefly
remind the partial-order reduction method and then
we present our reduction methodology. In paragraph
4 we present the experimentations of the method
made on SDL systems and in paragraph 5 we
summarizes the results obtained before concluding
in paragraph 6.

2. Modelling framework

2.1 CDL: an environment description language
The weak integration of formal methods in the
industry is mainly the consequence of two major
difficulty. First of all, the lack of industrial tools
allowing formal verification on large systems
generating a global state space explosion. Then
there is a gap between the process of requirements
designed in natural language and formal verification
using properties encoded in a well defined
semantics. Indeed model checking is an automatic
but mathematical process where the system and the
property have their own mathematical foundation so
that to ensure irrefutable results. Besides this,
writing requirements using temporal logics is not
straightforward and needs some expertise. To cope

1
 Specification and Description Language (ITU-T

Recommendation Z.100)

with those two drawbacks, the CDL language is
developed in order to propose an easy handling tool
for model checking verification [6]. The CDL aims at
modelling the behaviour of the under verification
system context as a set of formal use cases which
semantics relies on the semantics of traces [7]. This
DSL allows specifying the context with scenarios
and temporal properties using property patterns.
Moreover, CDL provides the ability to link each
expressed property to a limited scope of the system
behavior.The idea behind context is that the
requirements one want to verify are often linked to
specific use cases so that it’s not necessary to
explore all possible scenarios on the system.
Contrary to classical model checking methods where
the system is explored in its entirety, the CDL
language aims at reducing the system behaviour
before its effective verification by interfacing with an
existing model checker such as IFx, TINA or CADP
[8 , 9, 10]. The context description thus contributes
to reduce the complexity of the system bypassing
the state explosion. To address the problem of the
formalization of the requirements, following the work
of Dwyer and Cheng [11], CDL incorporates
temporal property patterns so that to assist the
engineer in expressing system requirements directly
in formal language. One of the originality of this
language is that the properties called observers can
be attached to a specific scope of the environment
where the verification of the property is the most
relevant. CDL is defined in three complementary
levels. The first one describes the applications
(actors) interacting with the system. The second one
identifies interesting functionalities of each actor so
that to dip the system into a particular situation
interesting for the verification. Those functionalities
are then detailed in the last level by sequences of
Message Sequence Charts defined in the norm
Z120 [13]. The CDL language have been integrated
in the OBP [12, 6] toolset developed as an eclipse
plugin in the Topcased

2
 environment. OBP allows

the modelling of graphical context and the connexion
to different model checkers.

2.2 Scenarios explosion
The description of the environment of a system
allows defining precise configurations one want to
observe on the model according to a property to be
fulfilled. This environment composed by several
actors running in parallel could possibly lead to a
huge amount of scenarios each one synchronised
with the system and the property. This could prevent
efficient model checking because of the size of the
scenario automata generated. Basically, the
combinatorial explosion of the global state space is
not a problem anymore because the composition of
a trace with the system is straightforward.

2
 www.topcased.org

 Page 3/6

Nevertheless the bottleneck is displaced to the
combinatorial explosion produced by all the possible
scenarios generated by the actors interleaving. For
instance, n concurrent actors executing only one
message would generate n! scenarios. This is
precisely this combinatorial explosion we want to
reduce. One can reasonably expect numerous
equivalent scenarios only differing by events which
can be interleaved in any order. This supposition is
justified because embedded critical systems are
designed without identifying all possible interactions
between the system and the environment so that it
has to be robust to handle unexpected sequences of
messages. One way to remove those equivalent
scenarios is the application of partial-order reduction
method. For instance, if the order of all combination
of the n previous messages is irrelevant, then only a
single scenario among the n! will be selected.

3. Partial-order reduction for SDL

3.1 Partial-order method
It has been observed that model checking method
makes redundant work by exploring all states and all
transitions in the global state space. Nevertheless
among all the interleaving leading to a same state,
very few of them modify the truth or falsity of a
property so that a lot of them could be removed from
the automata before its effective construction. Hence
the model checking becomes practical.

Partial-order takes advantage of the so called
diamond property which states that whenever two
adjacent transitions can be commuted without
modifying the system behaviour, then only one
interleaving is meaningful. In this case the two
transitions are said to be independent. The partial-
order theory appeared in the work of Mazurkiewicz
theory of traces [14] which semantics has been the
foundation of most partial-order methods.

The methodology of the algorithms implementing
partial-order reduction method is based on a static
analysis of the system: for each global state the
smallest subset among fireable transitions is
selected, sufficient to eliminate redundancies
introduced by the diamond property.

Many works in this area have been achieved by
several researchers. Valmari [15] first developed the
stubborn set method and noticed the ignoring
problem where some transitions could never been
reached (fairness assumption). In the work of Doron
Peled [16], another algorithm called ample set is
implemented and a solution for solving the ignoring
problem is presented by adding several conditions
called proviso. Further reduction has been obtained
by Godefroid [17] who noticed that independent
transitions are not always removed applying
previous algorithms. He developed the persistent set
(which generalizes ample set and stubborn set

method) and the sleep set method further reducing
the global state space.

The above algorithms differ by the information taken
from the system to compute the dependencies.
Comparisons between them revealed that the more
information the more reduction could be obtained but
not systematically. The smallest set selected the
smallest reduced graph computed is not granted. At
the end of the day, there isn’t a unique algorithm
giving systematically the best reduction.

Those algorithms have been implemented on the fly
with significant reduction results. For instance in the
figure 2, assuming that α?, β? and δ! are all three
independent:

Figure 2: Partial-order

Applying the partial-order method to the first system,
we obtain the reduced automata with solid lines and
states filled in grey. Dashed arrows and blank states
will be removed from the global state space.
Moreover states reachable from S1 and S3 will have
to be explored by applying the same method.

Introducing context behaviour before partial-order
reduction method could further reduce the global
state space. Let’s consider the Figure 3 symbolizing
the environment behaviour and the previous
automata. In this case, the environment will restrict
the system preventing it to explore states reachable
from S1 and S3. Therefore after partial-order
reduction only states S0, S2, S5, S8 and S9 will be
explored.

 Page 4/6

Figure 3: Context reduction

Describing the context of the system is a good way
to further reduce the system behaviour. As
introduced the main drawback resides in the
exponential number of scenarios obtained when
expanded.

The previous works apply the partial-order
methodology on the fly on the global state space. In
our work we apply partial-order method on the
context. We have developed a new independence
relation to group scenarios of the context into
equivalent classes. The main difference between our
independence relation and those already existing is
that partial-order method can’t be directly applied on
the graph of scenarios (context) because we are
working on two open systems: the environment and
the system whereas classical methods work directly
when constructing the global state space which is a
closed system. In fact the independence between
two actions in the context doesn’t ensure their
independence in the system. Summarizing our
independence relation: two events from the context
are independent whenever their interleaving lead to
the same behaviour of the system.

To compute those independence relations, we have
developed a decision procedure in case of systems
composed by a single one process.
To extend this relation to the multi process case, we
needed to take into account the possible
communication between internal processes which
can introduce some dependency relation.

Once the independence relation computed, we
applied the Mazurkiewicz trace theory to organize
the scenarios into equivalent classes. Two scenarios
are equivalent (belong to the same class) if one can
obtain the other one by permutation of independent
adjacent event. As a consequence, only one
representative of each class needs to be simulated
on the system.

For instance, let’s suppose 3 independent actions
each one occurring from a distinct actor:
A, B , C. We obtain 6 equivalent scenarios: ABC,
ACB, BAC, BCA, CAB, CBA. One can check that we

can obtain one another by successively permuting
pair wised independent actions (A,B), (A,C) or (B,C).
As a consequence all those scenarios belong to a
unique class: [ABC] representing all 6 previous
scenarios. Hence only one representative can be
kept.

3.2 Reduction methodology

The picture depicted in the Figure 6 summarizes the
different steps leading to the reduction of the
context. At the very beginning we start with the
context description designed by the engineer in
relation with several properties he wants to check,
and the SDL system.
The first step is to obtain the independence relation
between events of parallel actors. This is done by a
static analysis of the SDL model. Once the pair
wised independent events obtained we can apply
the algorithm computing the equivalent classes of
scenarios using the Foata [18] normal form. It is
important to denote that this first step is done by only
considering messages sent from the context to the
system. The main reason is that the context can’t
predict in which order the system will send the
messages. As in the theory of game and the
synthesis of controller [19], some are controllable by
the context (the output) and some are not (input
one). The idea is thus to separate outputs from
inputs messages. This technic allows factorizing
equivalent behaviour of controllable messages of the
context but still keeping track of all possible
reception order of the system. This one will
determinate the executable scenario of the sub
graph of scenarios obtained after reduction at model
checking time.
For instance, let’s consider the example of the
following picture corresponding to the context and its
entire graph of scenarios.

Figure 4: The context

 Page 5/6

The context is represented by two parallel actors
Actor1 and Actor2 each one sending a controllable
message (Alpha respectively Epsilon) to the system.
There are also two messages only controllable by
the system: Beta and Gamma. From the context
point of view we can’t determine in which order Beta
and gamma will be sent by the system which is seen
as a black box. In fact they could be sent after Alpha
reception, after Epsilon reception, after both Alpha
and Epsilon reception. Moreover Gamma and Beta
could be separated by the sending of Epsilon
message. The possible scenarios are represented in
the Figure 4.

Considering the following SDL system composed by
a single process, a static analysis will find out that
Alpha and Epsilon are independent.

Figure 5: SDL system and reduced graph scenario

At this step we must reconstruct the possible graph
scenarios by removing redundancies induced by the
independent messages. In the picture 5, we can see
that the initial graph context has been reduced when
removing redundancies. Since we don’t know
anything about the order of reception of Beta and
Gamma and since we don’t want to execute the
system to figure out the precise order, the sub graph
contains the scenarios with Beta and Gamma in any
possible sequence.

For practicality, this step will be done on the fly
without building the entire scenario graph at first.
Further composition with the system will completely
determinate the only executable scenario. In fact,
expanding the graph and composing each scenario
with the system is not very efficient because a lot of
them can’t be totally synchronised with the system.
For instance the scenario with the sequenced
messages Epsilon followed with Beta can’t be
simulated on the previous system because the

system will be in the state S2 waiting for Alpha and in
the meanwhile the context will be waiting for Beta. In
order to avoid useless such composition, we choose
to directly compose the sub graph with the system
which will make his choice. Only one composition is
needed instead of three if the context is expanded.

Figure 6: Reduction method

4. Experimentation: SDL models

In this paper, we focused our work on the control
part of the system without taking account of the data
part: affectations, parameters. We can expect that
the dependence introduced with the data will not
strongly decreased the reduction obtained because
those data will be taken into account only on
decision (comparisons) and on the parameters sent
by the output messages. Decisions have already
been taken into account when computing the control
independence. In fact decisions generally prevent
the diamond property to be fulfilled because of the
introduction of non-determinism (in case condition is
not executed). Moreover transmission of parameters
is made when exchanging messages. Those
parameters can’t modify the behaviour of the system
if no decisions are attached to them. We can thus
reasonably expect a little loss of reduction.

We have applied this method on several examples
of growing complexity designed in SDL specification
language. First we applied the technique on mono
process systems and then extended it with multi
process systems on avionics applications.

5. Results

Model Processes Actors Initial Scn Reduced Scn

DATCAPT 1 2 24 4

CPDLC 1 3 840 2

AFN 3 4 1238 301

 Page 6/6

We can see that the reduction could be very
important applying partial-order methods. In case of
the CPDLC

3
, we obtain a very big reduction because

the process concerned the starting of the application
where it has to start all the other ones. In this case,
the process doesn’t know in which order processes
will be instantiated so that saving messages are
present in all states. At the end, only two scenarios
are needed corresponding to a cold start and a reset
of the system. In case of the AFN

4
, 3 processes

have been modelled. The reduction is more limited
than the CPDLC because save instances are less
present and there are presence of non-determinism
with the decision clauses (conditions on variables).

6. Conclusion and perspectives

We have presented in this paper a method
combining context description method and partial-
order application. We obtained promising results on
avionic applications. This work will be further applied
with the data part. Partial-order applications have
been first introduced to untimed systems application.
Little work has been made in case of temporised
systems [20, 21]. We will extend our work to
temporised SDL systems with the introduction of the
timers. We can notice that the complexity of the
context is mainly due to the number of concurrent
actors identified. A methodology of context
construction is another way to further reduce the
context.

7. References

[1] Myers, Glenford J and Sandler, Corey: "The art of
software testing”, John Wiley & Son, 2004.

[2] Manna, Z., Pnuelli, A.: "The temporal logic of
reactive and concurrent systems", New York, 1992.

[3] Clarke, E.M., Emerson, E.A., Sistla, A.P.:
"Automatic verification of finite-state concurrent
systems using temporal logic specifications", ACM
Trans. Program. Lang. Syst., vol. 8, p. 244--263,
ACM, New York USA, 1986.

[4] Dhaussy P, Auvray J, De Belloy S, Boniol F and
Landel E: "Using context descriptions and property
definition patterns for software formal verification",

Workshop Modeva’08, ICST 2008, Lillehammer
Norway, 2008.

[5] R. Alur and R.K.Brayton and T.A. henzinger and
S.Qadeer and S.K. Rajamani: "Partial-Order
Reduction in Symbolic State Space Exploration", p.

340--351, Springer, 1997.

[6] P. Dhaussy., PY Pillain, S. Creff, A. Raji, Y. Le
Traon,B. Baudry, Evaluating Context Descriptions
and Property Definition Patterns for Software
Formal Validation. In Lecture Notes in Computer
Science 5795, Springer Verlag, Andy Schuerr, Bran
Selic (Eds): Model Driven Engineering Languages

3
 Controller Pilot Data Link Communication

4
 ATIS Facility Notification

and Systems (Models’09), No 5795 (2009), pages
438-452.

 [7] Haugen, O., Husa, K.E., Runde, R.K., Stolen, K.:
"Stairs: Towards formal design with sequence
diagrams”, Software and System Modeling, 2005.

[8] B. Berthomieu, P.-O. Ribet, F. Verdanat: "The tool
TINA – Construction of Abstract State Spaces for
Petri Nets and Time Petri Nets”, International
Journal of Production Research, vol. 42, 2004.

[9] Bozga, M., Graf, S., Mounier, L.: "A validation
environment for component-based real-time
systems”, CAV 2002, LNCS, vol. 2404, p.343,
Springer, Heidelberg, 2004.

[10] Fernandez, J.-C., et al.: “CADP: A Protocol
Validation and Verification Toolbox”, CAV 1996,
LNCS, vol. 1102, Springer, Heidelberg, 1996.

[11] Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: “Patterns
in property specifications for finite-state
verification”, Proceeding of the 21

st
 International

Conference on software Engineering, p. 411--420,
IEEE Computer Society Press, Los Alamitos, 1999.

[12] Roger, J.C.: ”Exploitation de contextes et
d’observateurs pour la vérification formelle de
modèles” , Phd report, Univ. Of Rennes I, France,

2006

[13] ITU-T: "Recommendation Z.120. Message
Sequence Charts”, International
Telecommunication Union – Standardization
Sector, Geneva, 2000.

[14] A. Mazurkiewicz: "Trace theory. In Petri nets:
Applications and Relationships to Other Models of
Concurrency”, Advances in Petri Nets, Part II,

Proceedings of an Advance Course, 255, Lecture
Notes in computer Science, p. 279--324, Springer-
Verlag, 1986.

[15] A. Valmari: "Stubborn sets for reduced state space
generation", Proceedings of the 10

th
International

Conference on Applications and theory of Petri
Nets, p. 491--515, Springer-Verlag, London, UK,
1991.

[16] D. Peled: "All from one, one for all: on model
checking using representatives”, CAV’93:
proceedings of the 5

th
 International Conference in

Computer Aided Verification, p. 377--390, Springer-
Verlag, London U.K., 1993.

[17] P. Godefroid: "Partial-order methods for the
verification of concurrent systems: an approach to
the state space explosion problem”, Springer-
Verlag, N.Y. USA, 1996.

[18] Deikert, Volker, Métivier: "Partial commutation and
traces", Handbook of formal languages, vol. 3:
beyond words, vol. 3, p. 457--533, Springer-Verlag,
New york USA, 1997.

[19] A. Arnold, A. Vincent and I. Walukiewicz: "Games
for synthesis of controllers with partial observation”,
303(1), p. 7--34, Theoretical Computer Science,
2003.

[20] Pagani F: "Partial Orders and Verification of Real-
Time systems", FTRTFT, p. 327--346, 1996.

[21] Bengtsson J, Bengt Jonsson, Lilius J and Yi W:
"Partial Order reductions for Timed Systems",

1998.

